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Electric Polarization of the Deuteron by a Point Charge* 
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The perturbation of the ground-state energy of the deuteron due to a fixed point charge at any distance is 
calculated, using the method of Dalgarno and Lewis and a simple ground-state wave function. Deviations 
from the uniform field results are evaluated for various distances and amount to about 5% for regions of 
interest. 

I. INTRODUCTION 

TH E effect on the deuteron of an external, uniform 
electric field has been calculated in various ap­

proximations by several authors.1 Recently, Clement2 

has re-examined this problem, and has considered its 
application to deuteron scattering from light nuclei. 

In particular, Clement2 has used the adiabatic ap­
proximation for the center-of-mass motion; that is, the 
internal motion of the nucleons in the deuteron is 
assumed to be rapid compared to the motion of the 
deuteron itself. Under these conditions, the electric 
field of the scatterer polarizes the deuteron, and the 
perturbation in the energy produced by the field is 
treated as an addition to the scattering potential, which 
depends only on the distance between the deuteron and 
the scatterer. 

For large impact-parameter scattering, the field is 
nearly uniform, and its magnitude follows an inverse 
square law. In second-order perturbation theory, the 
adiabatic polarization potential thus obeys an inverse 
fourth-power law asymptotically. For closer collisions 
this potential cannot be used since it gives divergent 
results and must be cut off at a reasonably large radius. 
In addition, as the collision distance diminishes, higher 
multipole terms in the electric field enter. 

In the present paper, a simple wave function is used 
for the unperturbed deuteron, and the adiabatic po­
larization potential is calculated using the method of 
Dalgarno and Lewis3 to carry out the second-order 
perturbation sums. General results are obtained for any 
multipole and for all distances. In particular, the short-
range modifications to the leading (dipole) part are 
exhibited explicitly, and long-range contributions are 
evaluated for all multipoles and are rewritten in terms 
of a single integral. A discussion of the experimental 
relevance of the theory is also given. 
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II. CALCULATION OF THE POLARIZATION ENERGY 

The Hamiltonian for a deuteron in the field of a 
point charge Ze fixed at the origin is 

H= [ V P
2 + V f t

2 ] + F ( r p - r n ) + ~ . (1) 
2M rv 

The definitions of the symbols are self-evident, the 
internucleon potential will be treated as central, and 
the neutron-proton mass difference is neglected. A 
standard transformation to center-of-mass coordinate 
x = | ( r p + r n ) and relative coordinate x=xn—rv puts 
the Hamiltonian into the form 

jj2 fj2 

H=-
4M M 

-70)-
Ze2 

(2) 

The adiabatic (or Born-Oppenheimer) approximation 
treats x as a parameter at first, evaluates the energy 
of the internal motion as a function of x, and then uses 
this energy as the potential in a second Schrodinger 
equation for the center-of-mass motion. 

Specifically, one considers two unperturbed Hamil-
tonians 

fi2 Ze2 

H0x= V * 2 + — (3a) 
AM x 

and 
H0r=-(ft2/M)Vr2+V(r), 

plus the perturbation 

(3b) 

H' = Z(?\ rVl-
x—ir xJ 

(3c) 

The plan is then to calculate the change in the eigen­
value of Hor induced by Hr up to second order, which 
yields what can be called the adiabatic perturbing 
potential V(x) that modifies the pure Coulomb scatter­
ing given by H0x. 

The first-order calculation is simple, and only yields 
short-range contributions. If $(r) is the unperturbed, 
normalized deuteron ground-state wave function, one 
obtains 

FiO * ) = / , d3r\$(r)\2H' 

Awe2Z drr2\<f>(r)\2\ 
xJ 

(4) 
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Since $(r) is appreciable only out to the deuteron 
"radius," and r>2x in the above integral, the potential 
Vi(x) is short-ranged. I t will be evaluated later for a 
specific form of wave function. 

The second-order adiabatic potential is 

V2(x)=Z 
{0\H'\n)(n\H'\0) 

Eo—En 

(5) 

where the states 10) and | n) are the ground and excited 
states of the deuteron system. To carry out the sum­
mation over the excited intermediate states, the method 
of Dalgarno and Lewis,3 recently extensively discussed 
and applied by Schwartz,4 will be employed. In this 
method one must solve the equation 

[F, f fo , ] |0>=[ff ' -<Q|H' |0>] |0> (6) 

for the function F, where (0) is the known ground-state 
vector of Hor. Then the second-order adiabatic potential 

F,(*) = <0|ff 'F |0>-<0|ff ' |0><0|F|0>, (7) 

after the completeness relation 

£l»X»l=l- •I o><o | 

has been invoked. Note that < 0 | # ' | 0 ) E = F I O X ; ) . 
Equation (6) can be solved analytically only for 

quite simple or special ground-state functions. One of 
these is the zero-range central wave function for the 
deuteron, 

<S>(r) 
• ( 2TT/ 

1/2, 

(8) 

where fi2y2M~l=EB, the deuteron binding energy. This 
satisfies the Schrodinger equation outside the range of 
the potential only, and cannot be trusted for small r. 
Next, the perturbing Hamiltonian is expanded in the 
usual Legendre polynomial series, both for r<2x and 
r>2x: 

# ' = LxK* , f ) iMcos0 ) , (9) 
z=o 

Ze\ / r \ l 1 
3Ci<(v) = — ( — ) —5io for r<2x, (9a) 

Ze2r/2x\l+1 
Ze2F /2x\l+l 1 

3Cz<(a?,f) = — I —J -dm for r>2x, (9b) 

where the notation is self-explanatory. With this ex­
pansion, and the similar one for the function F, 

F(x,r) = EF, (* , r )P , (cos0) , (10) 
i«0 

4 C. Schwartz, Ann. Phys. (N. Y.) 2, 156 (1959). 

it is easily shown that Eq. (6) becomes 

d2Fl 

dr2 
•2y-

dFi 1(1+1) 

dr 

where 

M 

-Fi=Q, 

•^i (*)Sio] , 

(11) 

(11a) 

and the function <£>(r) in Eq. (8) is used and assumed 
to be an eigenfunction of H§r. 

Particular solutions Fi of Eq. (11) can be easily 
obtained for 1^0 for both inside and outside regions in r: 

Fi<(*,r) = 
ZMe2 /r\l+l 

\2 

Pi>(*,r) = -

h27(l+l)\2xJ 

ZMe2/2x\l 
ZMe*/2xy 

fi2yl \ r I 

(12a) 

(12b) 

These functions are well behaved at r = 0 and r—>oo, 
and, surprisingly, their first derivatives with respect to 
r are continuous everywhere, including r~2x. The 
functions themselves, however, do not join continu­
ously a t . r = 2 # . Therefore, the general solution of the 
homogeneous equation obtained from Eq. (11) must be 
considered. This equation is of a type which yields 
Bessel's equation upon appropriate substitutions. The 
complete solutions, properly behaved at the boundary 
points and properly continuous at r—2x, can be found 
with some effort to be [for ^ 0 ] 

F j< ( * / ) = -

ZMe2 

X 

& 2 Y ( H - 1 ) 

Fi>(x,r) = -
ZMe2 

2l+l\ . -i 
•)yre^'~ix)ji(iyr)hi , 

(13a) 
/ / 

Wyl 

X 
/2x\l /2l+l\ • ."I 
( - J + ( )yre^r-^hi(iyr)jl , 

(13b) 

where ji(z) is the spherical Bessel function of order /, 
hi(z) is the spherical Hankel function of the first kind 
of order /, and 

JI^E (2yx+l)ji(2iyx)+xdji(2iyx)/dx, (14a) 

ht=~ (2yx+l)hl(2iyx) + xdhi(2iyx)/dx. (14b) 

For 1 = 0, the inhomogeneous equation is of first order 
in dFo/dr and can be integrated directly, while the 
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homogeneous equation is trivial. The result is 

ZMe2f/ ^r\Vi(x) 

tains the following explicit potential due to the / = 1 
terms: 

F0<(x,r)= — 

F0>(x,r)=-

where 

27 f t2 

ZMe1 

2yfi2 

A 2yJ Ze2 2y I Ze2 

+21n(2Tx) 

I Vi(x) 

2yx J 
(15a) 

.x Ze2 

- 2e2^ Ei ( - 2yr)+2 ln(yr) , (15b) 

E i ( - * ) = i e~vdy/y, 

and the lirst-order potential is 

Vx(x) = -Ze2[ar1c-4Y*+4T E i ( - 4 7 x ) ] . (15c> 

To evaluate the adiabatic potential F2(x) we insert 
the above expressions in Eq. (7), and carry out the 
integrations over r for each term in the multipole: 
expansion. 

III. EVALUATION OF THE ADIABATIC 
PERTURBING POTENTIAL 

In this section the dipole (1=1) term in V2(x) will 
be evaluated. This part is dominant at large distances, 
and its shorter range parts are also of interest. 

For the dipole term one must evaluate 

y f e~2^r 

79<n(*) = — / dh—-SCiFJjPiCcosfl)]8. (16) 
2j r2 

The angular integration is carried out, the convenient 
change of variables t = 2yx,y = yr is made, and one 
obtains 

2 Z2Me4 ( fl 

j/2d) (/) = r 4 / dy yh~2y 

3 ft2 I Jo 

+3t~2e-th1 / dy y2e~yji{iy)+2t2 / dy y~H~2y 

"j-[ dy y-tervhiiiy) , (17) 

where 

J != (l/2i)let(-~2+2r1-r2)+e~H-227 

- &!=-{£-**-*, 

ji(iy)-(l/2i)ley(y~2~y~1)-~e^(y~2+y~1)']J 

hi(iy) = ier"(y-*+yr1). 

After carrying out the integrals in Eq. (17), one ob-

T2<"(0=-
2Z2Me4 

3fiH* 

X\-i+e~2t\ 
2\t 21" 

8 8 . 

- e - 4 < [ ( 9 / / 8 ) + 9 / 4 ] - 4 / 6 E i ( - 2 / ) 1. (18) 

The asymptotic leading term is the t~4 term and agrees 
with Clement's2 results for the zero-range wave function. 

To examine the principal corrections to the leading 
term, it is convenient to use the well-known asymptotic 
expansion for the exponential integral5: 

Ei(—x)" 
e~x N nl(—i)n 

. E 
X n=0 %n 

(19) 

Using this form in Eq. (18), one obtains the approxi­
mate result 

Z2MeU 
V2M(t) \l-e~2t(2tz+^2+t-13)+3e~At(t+2) 

4ft2/4 . . . 

16 *r n\(-l)n] 
— f t r " £ , (20) 

3 «-6 (2t)n I 

where the asymptotic series is terminated in the usual 
way. The effect is shown in Table I, where D is defined 

TABLE I. The deviation of the dipole polarization potential 
from r 4 form: V2

a)(t)~(Z2Me*/4hn*)(l+D). The dimensionless 
parameter t is related to the deuteron center-of-mass position by 
x — t/ly — l.ltYj and AD is the error due to the asymptotic ex­
pansion discussed in the text. 

D AD 

3 
4 
5 
6 

-0.223 
-0.065 
-0.016 
-0.004 

±0.025 
db0.002 

as the fractional deviation of F2
(1)(/) due to its depar­

ture from f"4 behavior, and AD is the uncertainty in D 
produced by the asymptotic expansion. The deviation 
is seen to be appreciable as far out as £ = 4-5 or x=9 F. 
Clement2 has discussed the typical case of deuteron 
scattering from Co'9 at 3.32 MeV, for which the prin­
cipal contribution to the scattering is the region # « 12 F, 
although the cutoff is made at the nuclear radius, 
# « 6 F (*«2.7). 

5 E. Jahnke and F. Emde, Tables of Functions (Dover Publica­
tions, Inc., New York, 1945), p. 3. 
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One can easily examine the limit of the dipole po­
larization potential as t —> 0. This is done by expanding 
the exponentials in Eq. (18), and gives the result 
72(i)(0) = Z2Me4/2ft2. The fact that this result is posi­
tive, while second-order perturbation theory must give 
a negative result for all t, is due to the incorrectness of 
the zero-range wave function at short distances. In fact 
V2a)(t) is not analytic at / = 0 . Better wave functions 
have been discussed by Clement,2 including the Hulthen 
function, but their use does not seem justified in the 
present context. One should simply restrict oneself to 
consideration of the large-/ parts of the potential. 

IV. SUMMATION OF THE DOMINANT 
LONG-RANGE TERMS 

I t is interesting to examine the complete series for the 
polarization potential6 at very large t; that is, the part 
given by F z < in Eq. (12a). The potential due to this 
asymptotic part is 

4Z2Me4 r1 

F(/) = <0|#<'F<|0>= / dp****G(p), (21) 
fi2 Jo 

where 

G(#) = f;^ l+1C(/+l)(2/+l)]-1, p=r/2x. (21a) 
z—i 

The first method of calculation consists in integrating 
G(p) term by term, which yields the following result: 

4ZWe4r- (20! 1 
?(*)= £ — ( 2 / ) - 8 ( m ) - r 4 « i e w , (22) 

h2 Lz-i M-l J 
where R{t) is a rather complicated remainder term, 
which is a series in (2t)~l. Because of the exponential 

TABLE II. Effect of higher multipoles in the large / region. The 
asymptotic expansion in Eq. (22) appears as the ratio to the 
leading dipole term, its estimated error is given, and the exact 
ratio is in the last column. 

/ 
3 
4 
5 
6 

Asymptotic 
ratio 

1.22 
1.17 
1.106 
1.068 

Error 

0.14 
0.03 
0.006 
0.001 

Exact 
ratio 

1.042 
1.098 
1.078 
1.046 

6 Work similar to this has been carried out, for the case of the 
polarizability of atomic hydrogen, by the following: A. Temkin, 
Phys. Rev. 116, 358 (1959), and A. Dalgarno and N. Lynn, 
Proc. Phys. Soc. (London) A70, 223 (1957). 

factor which tends to damp out the remainder term, 
the series shown is dominant at large t. Nevertheless it 
is only semiconvergent since the ratio of two successive 
term approaches (l/t)2. In Table I I the semiconvergent 
series is evaluated and its error estimated, and is pre­
sented as a ratio to be compared with the leading 
(/= 1) term. 

The second method is to compute the sum denning 
G(p) and subsequently carry out the integration over p. 
One can easily show by differentiating term by term, 
and summing, that G(p) satisfies the following equation : 

pd2G dG p2 

This has the easily verified solution, 

G ^ ) = r 1 C ( l + ^ ) l n ( l + ^ ) + ( l - ^ ) l n ( l - ^ ) ] - ^ (24) 

which can also be shown to give the series, Eq. (21a), 
for p<l. In Table I I this latter result also appears; it 
contains the whole effect of Fi<y including the re­
mainder term, and was evaluated numerically, using 
the Brandeis University RPC-4000 electronic computer 
which was kindly programmed and operated by Pro­
fessor Milton Baker. 

V. CONCLUSIONS AND DISCUSSION 

A simplified deuteron model has been used to illus­
trate the procedure for calculating the adiabatic po­
larization potential between a point charge and a slowly 
moving deuteron, for all multipoles, in second-order 
perturbation theory. The higher multipoles make small, 
but not necessarily negligible, contributions to the 
potential, which is dominated by the inverse fourth-
power behavior due to the dipole term. 

For future investigation one might include the use 
of better unperturbed deuteron wave functions. Al­
though other analytical solutions of Eq. (6) probably 
do not exist, numerical quadrature by machine should 
be easy. Higher order effects in the mutual polarization 
of two deuterons might also be considered. Analysis of 
experiments other than those discussed by Clement2 

can also be attempted. 
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